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COMPUTER SIMULATION, AND SYSTEM OPTIMIZATION*
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Senior Technical Staff to Vice President
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McDonnell Douglas Astronautics Company - Western Division

L. Gainen
Manager, Modeling and Simulation

Information Systems Subdivision
McDonnell Douglas Astronautics Company - Western Division

C. 0. Beum, Jr.
Space Research Scientist, Development System Engineering

System Engineering Management
North American Rockwell Corporation - Space Division

ABSTRACT

Many systems anr7 processes in use today are quite complex, and experimen-

tation regarding them is both difficult and expensive. For such systems or

processes, mathematical solution for outputs in terms of inputs is usually

not feasible, and computer simulation is often an effective and efficient com-

plement to experimentation.

Complete system analysis is a general approach to the coorditiation of

experimentation and computer simulation in the analysis and optimihation of

a system or process. In addition, it is somewhat novel in its approach.

Three basic stages of complete system analysis are quantitative system

analysis, computer simulation, and system optimization.

'This paper is the overview of a one-semester course, given by the authors
for the Operations Research and Statistics Department of California State
College at Long Beach. Complete systen-. analysis and quantitativ'e! system
analysis are discussed by Dr. Goodman; computer simulation, by
Mr. Gainen; and system optimization, by Mr. Beum.



Quantitative system analysis transforms qualitative elements of the system
into numerical form, and constructs a system model for relationships among
component parts of the system. It is a comprehensive and definitive approach

to model construction.

It is followed by computer simulation transforming the model, which is a
mathematical representation of the system, into a simulation computer pro-

gram, which is a computer representation of the system. Experimentation

with the system may then be complemented by computer simulation of the

system.

Finally, system optimization is accomplished by the optimization of a

meaningful measure of system effectiveness. This optimization may be

accomplished by mathematical techniques for simple systems. For complex

systems, however, optimization requires iterative repetition of system

experimentation and simulation, analysis, and improvement.

During the design of a complex system, the system does not yet exist and
experimentation regarding it is impossible. The approach of complete

system analysis then may be modified to yield complete system design, a

meaningful framework for the utilization of computer simulation in the design

of a complex system.
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INTRODUCTION

Many systems and processes in use today are quite complex. and experimen-

tation regarding them is both difficult and expensive. For such systems or

processes, mathematic.al solution for outputs in terms of inputs is usually

not feasible, and computer simulation is often an effective and efficient com-

plement to experimentation.

When the model of the system or process is translated into a simulation

computer program, the system or process and the effects of various factors

upon it may be simulated. The accuracy and precision of the computer

simulation increase as the accuracy and precision of the model increase.

"rhere are four periods or phases in the life cycle of a system or process--

research, development. operation. and replacement. In like manner, there

are four periods or phases in the evolution of one's knowledge concerning an

existing system or process--description, modeling, prediction, and control

and optimization. Computer simulation yields appropriate results in all four

periods of the life cycle, and in the latter three periods of the evolution of

knowledge.

Complete system analysis is a general approach to the coordination of exper-

irnentation and computer simulation in analysis and optimization of a system

or process. In addition. it is somewhat novel in its approach. Three basic

stages of complete system analysis are quantitative system analysis, com-

puter simulation, and system optimization.

Quantitative system analysis transforms qualitative elements of the system

into numerical form. and constructs a system model for relationships among

component parts of the system. It is a comprehensive and definitive approach

to model construction.
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A detailed structure is developed for the system by arranging system elements

into an informative order. A numerical description then is defined for the

detailed structure by associating a number with each ordered qualitative

element. Component parts of the system are arranged into an informative

and unifying order to form a general structure. To simplify the specificati.

and estimation of a system model, related component parts are combined

whenever feasible. A system model is constructed by specifying relationships

among component parts in the general structure. The relationships are

expressed as mathematical equations containing unspecified constants.

Computer simulation transforms the model, which is a mathematical rep-

resentation of the system, into a simulation computer program, which is a

computer representation of the system. Experimentation with the system

may then be complemented by computer simulation of the system.

Finally, system optimization is accomplished by the optimization ,.f a mean-

ingful measure of system effectiveness. This optimization may be accom-

plished by mathematical tech~liques for simple, systems. For complex

systems, however, optimization requires iterative repetition of system

experimentation and simulation, analysis, and improvement.

During the design of a complex system, the system does not yet exist and

experimentation regarding it is impossible. The approach of complete

system analysis then may be modified to yield complete system design, a

meaningful framework for the utilization ol computer simulation in the design

of a complex system.
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COMPLETE SYSTEM ANALYSIS

INTRODUCTION

Complete system analysis provides a logical and informative mechanism for

augmenting experimentation with computer simulation. It supplies the frame-

work of a program for constructing and estimating a model, developing a

simulation computer program, validating the model and simulation computer

program, performing experimental and simulation trials, and analyzing

experimental and simulation data. It also includes iterative improvement of

the system, and design of additional experimental and simulation trials.

An outline of complete system analysis is followed by an overview of it,

and a brief discussion of it and it's modification for systein design.

OUTLINE

Complete system analysis, as illustrated by Figure 1, is composed of eleven

basic stages:

1. Quantitative system analysis to transform qualitative elements of the
system into numerical form and to construct a model, with unspeci-
fied constants, )r relationships among component parts of the system.

Z. Experimental trial(s) to yield experimental data.

3. -Model estimation to produce estimates of unspecified constants in
the model from experimental data and available auxiliary data, and
to perform a preliminary evaluation of the model's adequacy.

4. Simulation programming to construct a simulation computer program
from the model.

5. Simulation trial(s) to yield simulation data.

6. Model and simulation data comparison to provide a validation
(positive check) for the simulation computer program.

7. Experimental and simulation data comparison to provide a validation
for the combination of model and simulation computer program.

3
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Figure 1. Complete System Analysis

8. Experimental and simulation data analysis to aid optimization by
suggesting system improvement.

9. Optimization to improve the system and apply appropriate stages of
complete system analysis to the improved system, in an iterative
manner.

10. Design of experimental and simulation trials to implement
optimization.

11. Requirements analysis to provide a basis for optimization,
and design of experimental and simulation trials.

OVERVIEW

Complete system analysis, which is outlined above and graphically portrayed

in Figure 1, may be viewed as a double diamond.

Its outer portion (composed of AB, AE, BC, CF, DA, and DC) contains those

stages which precede the generation of data and are not data-based. Its inner
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portion (composed of EB, BF, EF, ED, and FD) contains those stages which

follow the generation of data and are data-based.

The model and simulation computer program are developed and validated

by means of stages which comprise the upper portion of the double diamond

%AB, AE, E!., BC, CF, BF, and EF). Analysis of data, and design of
experimental and simulation trials to optimize the system, are performed by

those stages which comprise the lower portion of the double diamond (ED,

FD, DA, and DC).

Development of the model and design, performance and analysis of experi-

mental trials are accomplished by those stages in the left-hand portion (AI'e

AE, EB, ED, and DA). Finally, the right-hand portion (BC, CF, BF, EF,

FD, and DC) contains those stages concerned with developing and validating

the simulation computer program, and with designing, performing and ana-

lyzing simulation trials.

The inherent symmetry and simplicity of the double diamond make it a very

meaningful and suggestive way in which to view complete system analysis.

DISCUSSION

Let the system be composed of components, the components contain compo-

nent parts, and the cormponent parts have elements. (Deeper levels of

system composition could be considered, if necessary.)

The transformation of qualitative system elements into numerical form is

accomplished in two steps:

1. A detailcd structure for the system is developed by grouping the
related elements in a component part, and arranging these groups
and, to the extent feasible, elements within groups into an infor-
mative order. The grouping and arranging are based on a primary
unifying characteristic of the elements in the component part, as
determined from the elements themselves and the function of the
component part (see Figure 2).

Z. A numerical description of the detailed structure is defined by
associating a number with each ordered qualitative element. The

5
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Fig~ure 2. Arrangement of Elements to Form a Detailed Structure

base point tzero) for a numerical sLcale- is seltected at,, ordingz to, tht,
primary unifying characteristic of thv coniponent part. Witit (-ach
element, there is associated a nuLmerical vpalue colrc-.spwid-.1,1 to jtý-
relative distance frorn the base. point (sev F~igu~re. ).

Construction of at system model for relationships among comnpone~nt partst

then is performed in the following three steps:

1. Groups of related component parts within a componen~t--and compo-
nents-°are arranged into a•n informative and unifying order !,o form• t
general structure. ro the extent feasible. the arrangaement should
be based on the desirable characteristic that a component part tends
to inflUen.ce only those component parts which follow it (see,
Figure 4).

Z. Groups of related component parts are combine:d whenever feasible,
to simplify the specification and estimnation cf ai system model.
Two of the simplest types of combinations are average.s itnd products
(see Figure 5).
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Figure 3. Association of a Number with Each Ordered Element
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Figure 4. Arrangement of Component Parts to Form a General Structure
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Figure 5. Combination of Component Parts

3. Relationships are specified among combinations of component parts
in the general structure. These relationships comprise the system
model, which is a mathematical representation of the system.

It is frequently both convenient and sufficiently accurate (for example, during

exploratory research) to have the system model composed of linear rela'zion-

ships. The model should also contain random influences if the system con..

tains them.

An application of quantitative system analysis to the flow of scientific and

technical information (flow process) is summarized by Reference I and is

presented in full by Reference 2.

The model becomes completely specified when values are assigned to its

unspecified constants. The usual way to accomplish this is to estimate the

constants from experimental data and available auxiliary data, by statistical
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estimation techniques (for example, regression analysis), A system model

which admits good estimators of its unspecified constants is preferable to a

more exact one which admits only poor estimators.

A simulation computer program transforms the model's mathematical rep-

resentation of the system into a computer representation of the system.

Input data is required for the simulation computer program to produce a

simulation trial.

Although frequently overlooked or ignored, validation should be provided for

the model and simulation computer program. When the simulation computer

program has been validated to assure that it adequately represents the sys-

tem model, the combination of model and simulation computer program

should be validated to assure that the combination adequately represents the

system. The required comparisons, of the model and simulation data followed

by that of experimental and similation data, are performed by statistical

testing techniques (for example, analysis of variance). When the system and

model contain random influences, the same inputs may yield different sets of

experimental and simulation data, and validation comparisons should take

this randomness of the data into account. Experimental and simulation data

analysis aids optimization by suggesting improvement of the system. The

analysis is accomplished by both statistical estimation and testing techniques.

Since few systems cannot be improved, one of the most important stages is

optimization through iterative improvement of the system and repetition of the

appropriate stages of complete system analysis. The design of experimental

and simulation trials is, of course, achieved by the techniques of statistical

design of experiments.

Chapter 2 of Reference 3 describes the planning of computer simulation

trials in a manner similar to that of complete system analysis.

During the design of a complex system, thzs system does not yet exist and

"experimentation regarding it is impossible. The system is replaced by

9
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Figure 6. Complete System Design

system specifications; and system experimental data is replacced by alternate

systems (system configurations) 1, 2, ... , N. This modification of the

approach of complete system analysis yields a meaningful framework for the

utilization of computer simulation in the design of a complex system (see

Figure 6,). It is called complete system design.

The Appendix presents a graphic summary of complete system analysis

(Figures A-I through A-8) and complete system design (Figures A-9 through

A- 16).
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QUANTITATIVE SYSTEM ANALYSIS

INTRODUCTION

A vast majority of knowledge in the physical sciences, and an increasing

amount in the behavioral and life sciences, is based upon models, of which

many are mathematical. Mathematical and statistical operations begin with

the assumption or existence of these models. To the author's knowledge,

relatively little comprehensive and definitive work has been published on the

modus operandi of their construction; even less has been published on con-

struction for systems with elements which are inherently qualitative, rather

than quantitative. Model construction is more an art than a science.

System analysis could accomplish part of the model construction by providing

a structure for the system. However, it remains for quantitative system

analysis to complete the mnodel construction by trauisforming qualitative

system elements into numerical form, and by specifying relationships among

,:omponent parts of the system. Quantitative system analysis, although in

somewhat preliminary form at present, is a comprehensive and definitive

approach to the modus operandi of model construction.

A summary of quantitative system analysis has been given in the discussion

of complete system analysis. It is described here in more detail.

Reftr'ences I and 2 contain an informative cxamplu of the application of

quantitative system analysis to the flow of scientific and technical information

(flow process). This application is summarized by Reference 1 and is pre-

sented in full by Reference 2. It is briefly introduced below. Pertinent

tables from Reference 2 illustrate the description which follows.

The Department of Defense (DOD) has sponsored the DOD User-Needs Study

to investigate, by means of a survey, the flow process within DOD (Phase I)

11



and the defense industry (Phase I1). Phase II surveyed a representative

sample of 1, 500 from a population of approximately 120, 000 engineers,

scientists and technical personnel. These personnel were employed by 73

companies, 8 research institutes and 2 universities that are defense

contractors.

An Interview Guide was employed to monitor the flow process by means of

questions exploring the component parts of that process. Sixty-three ques-

tions were asked regarding the USER of scientific and technical information,

his most recent scientific or technical TASK, his general UTILIZATION of

information centers and services, and the SEARCH AND ACQUISITION pro-

cess for information specifically related to the task. Responses to 55 of

these questions are qualitative.

The components of the flow process are USER, TASK, UTILIZATION, and

SEARCH AND ACQUISITION. Questions are the component parts, and

question responses are the elements.

The two major parts in the description of quantitative system analysis are

(1) transformation of qualitative system elements into numerical form, and

(2) construction of a model for relationships among system component parts.

The former contains development of a detailed structure for the system, and

definition of a numerical description for the detailed structure; the latter

contains development of a general structure for the system, combination of

related component parts in the general structure, and specification of a

system model for relationships among component parts.

TRANSFORMATION OF SYSTEM ELEMENTS

As noted above, the transformation of qualitative system elements into

numerical form is performed by the develorment of a detailed structure and

the definition of a numerical description for that detailed structure.

12



D)evelopmnent of a Detailed Structure

A detailed structure for qualitattive system elt_,niejnt.• 1s (lt(\ loped to sc rvy
as the basis for the transform;ition of these eec mneOt In ,i lwli t ion, tI V,

detailed structure brings the locVil ;tspect.s of the systerm into focus :tnd

provides it foundation for a general structure. This det-ijiled structure is

formed by an informative arrangement of elerments-.

The first step is to specify a primary unifying charcteristic of the

elements in a component part. This element characteristic should be deter-

mined from not only the elements themselves, but also the function of the

component part.

The next ,.tep is to collect into groups those elements which are related by

the element characteristic. According to this characteristic, an ordering is

then arranged for groups and, to the extent feasible, for elements within

groups. All elements in a component part may be arranged into one ordering

if all elements within each group may be arranged into an ordering. Accord-

ing to the element characteristic, an element or group of elements is more

similar to elements or groups of elements which are closer to it in the

arrangement, than to those farther away.

Depending on the irnaplications of the element characteristic, there ,-.e three

types of detailed structure:

1. Visible structure, explicitly implied by the element characteristic.

2. Partically visible structure, implicitly implied by the element
characteristic.

1. Invisible structure, not implied at all by the element characteristic.

A visible structure is obvious, and possesses no flexibility. A partially

visible structure is apparent, but possesses some flexibility. An invisible

structure must be inferred, and possesses considerable flexibility. The

position of elements in the arrangement is meaningful in a visible structure,

13



and indicative in a partially visible structure, but only descriptive in an

invisible structure.

Examples of visible, partially visible, and invisible structure in the flow

process application are given in Tables I through 3, respectively. For the

tables, arabic numerals in parentheses--(1), (2), and so forth--indicate the

ordering in the Interview Guide; while roman numerals--I, II, and so forth--

indicate the ordering in the corresponding detailed structure. The numerical

description scale is included in the tables.

Definition of a Numerical Description

When the detailed structure is developed, its numerical description is

appropriate. By associating a number with each ordered qualitative element,

the numerical description provides a more exact differentiation among the

elements within a component part: and it enables estimation of the system

model, which is composed of relationships among component parts. The

numerical description also represents the system in a form to which a large

variety of numerical techniques may be applied.

According to the elemnent characteristic, the base point (zero) for a

numerical scale is selected. With each element, there is associated a

numerical value corresponding to its relative distance from the base point.

To standardize the numerical description, a negative integer, zero or

positive integer is associated with each ordered qualitative element whenever

feasible. Zero is employed when it is meaningful to consider the element to

be null, and a negative integer is employed when it is meaningful to consider

the element as opposite in direction to most of the elements. Variable

spacing between the associated numbers indicates that the elements exhibit

variable similarity, or distance from each other, according to the element

characteristic. The same number is associated with two elements in a

component part if--and only if--the two elements are in the same group of

14



Table 1

VISIBLF STRUcTURE.

Question 58: User's Equivalent Government Service (GS) Rating:`

Informative Order Scale

1 (01) GS-6 (under 6,000) 0. 07

II (02) GS-9 (6, 000 - 7, 999) 0. 15

III (03) GS-11 (8, 000 - 10, 249) 0. 23

IV (04) GS-12 (10,250- 11,999) 0.31

V (05) GS-13 (12, 000 - 13,999) 0.39

VI (06) GS-14 (14,000 - 16,499) 0.46

VII (07) GS-15 (16, 500 - 18,999) 0.54

VIII (08) GS- 16 (19, 000 - 20,999) 0.61

IX (09) GS- 17 (Z1, 000 - 23, 999) .0.69

X (10) GS-18 (24, 000 - 26,999) 0.77

XI (11) Sp A (27,000 - 29,999) 0. 85

XII (12) Sp B (30,000 - 34,999) 0.92

XIII (13) Sp C (over 35,000) 1.00

::FThe element characteristic is equivalent GS rating.

related elements, and the elements within that group cannot be arranged

into an ordering (that is, are the same distance from the base point).

The association of a number with each qualitative element in a component

part associates a scale of possible numerical values with the component part.

Then all numerical values in the scale are divided by the largest one in

absolute value, so that the scale is normalized to between - 1 and 1.

The value of the numerical description is meaningful for elements in a

visible structure, and indicative for elements in a partially visible structure,

but only descriptive for elements in an invisible structure. Examples are

again provided by the flow process application in Tables 1 through 3.

15



Table 2

PARTIALLY VISIBLE STRUCTURE

Question 14: First Source for Information*

Informative Order Scale

1 (01) Received with task assignment 0. 00

IU (04) Recalled it 0.05

III (09) Searched own collection 0. 10

IV (19) Respondent's own action 0. 15
V (03) Assigned subordinate to get it 0. 20

VI (05) Asked a colleague 0. 25

VII (02) Asked my supervisor 0.30

VIII (08) Requested search of
department files 0. 35

IX (06) Asked an internal company
consultant 0.45

X (10) Searched company technical
information center 0. 50

X (07) Requested library search 0. 50

XI (15) Requested data from vendor,
manufacturer, or supplier 0 0. 60I

XI (14) Searched vendor, manu-
facturer, or supplier sources 0.60

XII (11) Searched an outside library , 0.70

XIII (18) Asked an external consultant
or expert 0. 80

XIV (13) Requested search of a DOD
Information Center 0.90

XIV (12) Searched a DOD Infor-
mation Center 0.90

XV (17) Asked customer 1.00

SThe element characteristic is distance from the user.
**In the analysis, no distinction is made between the two responses

in this group of related responses.

16
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Table 3

iNVISIBLE STRUCTURE

Question 27: Desired Layout of Information Media*

Informative Order Scale

I (14) Recall 0.00

II (13) Telephone conversation 0.06

III (11) Group discussion 0. 12

IV (04) Photographs 0. 19

V (03) Graphics (diagrams, drawings,
schematics, flow charts,
graphs, maps) 0. 25

VI (02) Tables or lists 0.31

VII (01) Narrative text 0.37

VIII (18) Narrative text and tables
or lists 0.44

IX (09) Graphics and lists 0. 50

X (08) Photographs and text 0. 56

XI (07) Graphics and text 0. 63

XII (16) Graphics, text,and oral 0.69

XIII (17) Graphics, text, oral, and
recall 0. 75

XIV (12) Informal briefing, with chalk
or pencil drawing" 0. 8z

XV (05) Microfilm - microfiche 0. 88

XVI (06) Slides or motion pictures 0.94

XVII (10) Formal briefing or lecture 1. 00

"The element characteristic is formality.

17



A detailed structure suggests its ow, tr,ý ntirica[ descrip' 10: w eni lie

elements in a component part have been prope-rly arranged. For i more

refined analysis, a numerical description could be tltered to i, n -orve the

linearity of important relationships whic l involve the corrre 's!po(l no

component part.

CONSTRUCTION OF A SYSTKIM MODPL

Development of a general structure, comnbinattion of r.late.d cuomponent parst

in the generai structure, and specification of at system rfnodel for relation-

ships among combinations of component parts in the general st ructLre

accomplish the construction of a system model.

Development of a General Structure

A general structure now is developed to serve as the basis for the construc-

tion of a system midel for relation ships ami-nong component parts, and

to bring the global aspects of the system into focus. This general structure

is formed by an informative and unifying arrangement of component parts.

The first step is to identify the components of the sytem. The next step

is to form groups of related component parts within components. Then an

ordering is arranged for components, groups within components, and

component parts within groups. To the extent feasible, the arrangement

should possess the desirable characteristic that a component part tends to

influence only those component parts which follow it.

An example is provided by the flow process application in Table 4, which

also includes component part combinations and linear relationships. In

this table, Q denotes Question; and 0 I 3 1 ..... 36 symbolize general

unspecified constants in the relationships. For simplicity, the same

symbols, P0 0, %, .... P are used in each relationship; although they

are not meant to denote the same constants.

38
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Table 4

SPECIFICATION OF A SYSTEM MODEL

USER COMPONENT*

A. User's Age: 048

B. User's Education

1. User's highest degree: Q50A = P0 + P, (048)

2. User's field of degree: Q50C = P0 + P, (Q48)

3. User's year of L.,gree: (Q50B)
Not used in flow process model.

C. User's Experience

Combination: 1/2 (Q51+Q5Z) = 0 + PI (048)

1. User's job experience: 051

2. User's company experience: Q52

D. User's Position

1. User's kind of position

Q55 = P + PI(048) + P7(QSOA) + P3(Q50C) + P4(1/2(Q51+052))

2. User's field of position

Q56 = P0 + Pi.(048) + P3Z(Q50A) + P33(Q50C) + P4 (I/Z(Q51+Q52))

3. User's Military Occupational Specialty (MOS) equivalent
(Q53 and Q57 - narrative - coded as 057)
Not used in flow process model.

E. User's Level

Combination:

1/Z(Q49+Q58) =P0 + 1 3(Q48) +P?(Q5OA) +P3 (Q5OC) + P4(1/2(Q51+Q52))

+ P5(Q55) +1P6(056)

1. User's equivalent Government Service (GS) rating: Q58

2. Number of personnel supervised by user: 049

3. User's type of acctivity (Q54)
Not used in flow process model.

:'.Q denotes Question; and Po0, Pi, •Z''", 7. symbolize general unspecified
constants in the relationships. For simplicity, the same symbols, P0,
01, P2, .,., P36, are used for each relationship; although they are not
meant to denote the same constants.
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Component parts (or components) which tend to influence other component

parts (components) may be called input component parts (co~nponents), and

those which tend to be influenced by other component parts (components) may

be called output component parts (components). Arrangement of components

and component parts within components, according to an input/output point of

view, facilitates the specification of a system model for relationships. It also

provides insight into the system.

Combination of Related Component Parts

Groups of related component parts are combined, whenever feasible, to

simplify the specification and estimation of a system model for relationships

among component parts in the general structure. In addition, the combina-

tion of related component parts summarizes and simplifies the general

structure. Two of the simplest types of combinations are averages and

products. They keep the combination scales normalized to between -1 and 1.

For the flow process example, see Table 4.

Component part combinations which tend to influence other combinations of

component parts may be called input factors, and combinations of component

parts which tend to be influenced by other component part combinations may

be called output factors. It is both informative and suggestive to characterize

combinations of component parts as input factors and output factors. One

must realize, however, that statistical analysis can merely estimate and

indicate the significance of a relationship. It cannot imply that the relation-

ship is cause and effect, for this can only be accomplished by a thorough

knowledge of the system.

When a more refined analysis is desired, the component part combinations

could be separated.

Specification of a System Model

Once the general structure is developed and groups of related component

parts are combined, it is appropriate to specify a system model for
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relationships among combinations of component parts in the general structure.

The terms, combination of component parts and component part combination,

also are used to cover the degenerate case of a single component part (for

example, Q56 in Table 4). A linear relationship among component part com-

binations is a mathematical expression of the variation in a given combination

of component parts (Y) as a linear function, with unspecified constants, of the

variations in the other component part combinations (X 1 , X?,...., Xp).

p

Analysis of the general structure from an input/output point of view yields
those component part combinations which are judged to be potentially related
to each combination of component parts in the gener~l structure. Only the

potentially related component part combinations are included in the relation-

ship for that combination of component parts. It is frequently both convenient

and sufficiently accurate (for example, during exploratory research) to let

the system model be composed of linear relationships. An example is pro-

vided by the now process application in Table 4.

When the component parts have been properly -arranged, a general structure

suggests the relationships. A more refined analysis could specify additional

relatiornships, particularly those necessitated by the separation of component

part cornbknations.
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COMPUTER SIMULATION

INTRODUCTION

Several classes of system problems, such as those where either subsystem

resource allocation or subsystem dynamic interactions are to be evaluated,

are not amenable to closed-form mathematical solutions. However, models

for such system problems have been created, reduced to computer algorithm,

and computed, providing important analytical results for systems engineers.

The technique employed is generally referred to as discrete simulation,

event simulation, or process simulation. This discussion will shed light on

the rationale and the steps involved, and will present computer aids for per-

forming such simulations.

SYSTEMS ENGINEERING ANALYSIS

Engineers are system-oriented people. Most of us operate with systems

where relationships between elements of the system (that is, the subsystems)

are readily stated in mathematical form. Solutions to our analytical problems

require that, at worst, we hire a statistician, who hires a programmer, who

hires a numerical analyst to develop an algorithm that provides the signifi-

cant figures required in computing the mathematical model of our system.

At best, we write our own FORTRAN program using library routines to con-

struct the system model and have the answer within a week.

For some engineers, however, systems become complicated and the models

do not lend themselves to easy assembly for computation. The elements

themselves may be tractable, but put together and encapsulated in the bigger

black box by procedures, priorities and operational constraints at a higher

system level than considered during element (subsystem) analysis, we find

23



ourselves in a less quantifiable, less well-ordered, less closed-form model

domain. This situation reduces our ability to predict with a high degree of

confidence system performance within expected ranges of operational param-

eters. Thus, systems engineering analysis proceeds with system model

assumptions (examples being linearity of constraints or static representation

of dynamic, time-phased subsystem considerations) that provide approximate

results.

Discrete system simulation can be used when one cannot find other techniques

for analyzing and evaluating alternative dynamic system operational schemes.

That is, the model can be built with which to experiment with controlled sys-
tem variables in order to apply unusual stresses beyond normal system

operating ranges; or to force uncontrolled variables to such levels and for

such assumed periods of time that would either be too damaging or would take

too long in the real system operation, if that system actually exists.

Furthermore, we can formulate subsystem interactions between functional

elements of the system and relate these logically to the whole system. Such

submodel formulation relieves the systems engineer of the detailed task of

describing complete, closed-form system performance; however, he syn-

thesizes the complete system model by combining submodel formulation

provided by subsystem experts.

LEVELS OF SIMULATION ANALYSIS

Just where does simulation fit into a total system program? We can enumer-

ate four distinct periods or phases in the life cycle of a system: (1) research,

(2) development, (3) operation, and (4) replacement. In at least the first

three, various levels of uncertainty becloud the major aspects of the tasks

involved in accomplishing objectives. For example, in the research phase,

great uncertainty often surrounds the very concept of system proposals.

During the development of a system, many important design parameters

affecting system performance present alternative means of accomplishment.

In the operational phase, there are uncertainties concerning system growth
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and flexibility. In all of these phases, system simulation is capable of

providing program managers with analytical guidelines for selecting preferred

system alternatives.

Re1search

System research takes the form of advances in technology along many lines.

Component development, automatic progran-iming of central compu1ters,

advanced display techniques, and responsive man-machine information query

subsystems are examples of related developments upon which advances in

system application depend. When research culminates, the existing system

concepts are based either on the unique application of the advanced technol-

ogy, or on revised concepts of data acquiisition, processing, display, or

management.

With success of the hypothesized system depending possibly on a yet unrealized

breakthrough in some technology area, how can the conceptualized system's

feasibility be demonstrated? Simulation can help predict the chance of

achieving successful implementation of the concept. In effect, the concept is

simulated to ascertain the feasibility of the following:

1. Reaction times required by system elements.

2. Proposed subsystem transfer functions.

3. Information content required for decision making.

4. Survivability characteristics in a hostile environment.

5. Phasing and planning compatibility.

6. Reliability goals.

The questions of concept answerable through simulation are broadly stated,

looking to total system reactions to subsystem stimuli, using engineering

estimates of the performance characteristics and other planning factors.

Estimates of subsystem performance are probabilistically stated, usually,

but are they consistent? Inconsistencies in planning factors conceived by

different segments of an organization responsible for pieces of the concept
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are soon shaken out by a system simulation exercise performed early in the

research phase.

Development

In the development phase of the system life cycle, simulation provides

valuable insights into four major aspects of the design process: (1) alterna-

tive configurations, (Z.) allocation of funds for total system improvement,

(3) costs versus system effectiveness, and (4) policy changes versus system

performance.

Once system development has begun, and plans are beginning to yield'products,

the system can be further analyzed by simulation. At this stage of the sys-

tem life cycle, much more is known about the specifications of the subsystems.

Probability distributions and parameters associated with variables are better

quantifiable. The questions asked of the simulation analysis become more

specific: What priority should this sensor data have as opposed to all others?

How much data delay can be tolerated and still achieve effective system

operation? What is the effect of better equipment maint'enance policy (and

increased mean time between failures) on system performance? What are

the costs of Configuration A as opposed to Configuration B? What are the

gains in performance between System A and System B? Where are the

decision bottlenecks? What action best relieves bottleneck conditions? Do

we want to relieve these bottleneck conditions?

The process of designing subsystems of a system accelerates during the

development phase. Their elements and characteristics can be either

described in great detail or may be estimated very confidently. Some of these

characteristics, such as subsystem data transfer capacity, become critical

with respect to the potential stress that the system will undergo. Detailed

descriptions cf these critical characteristics are parameterized in the sys-

tem model during the development phase of system design. System perform-

ance can be examined while these elemental values are allowed to vary. A

preferred combination of system policy and hardware characteristics can be
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established from simulation analysis cf several choices, measured by values

of the chosen objective function.

Operation

There are many impelling reasons for simulating an operational system.

These fall into the following categories: (1) system capacity limitations

versus stress levels, (Z) decision automation potential, (3) total system

value analysis of subsystem improvement, and (4) off-line training exercises.

In the operational phase of a system's life, all of the data about all of the

elements of each subsystem can be collected to any degree of refinement.

Certainly, a computer system simulation model could not be built with more

realism than ex..ists in the actual system. However, computer simulation

still plays an important analytic role in extending understanding of existing

systems. At this stage, questions of analysis are more precisely directed

to known system elements. The systems engineer asks: what is the effect

on system performance of sampling sensor data at less frequent intervals, if

the basic error rate frequency distribution of the sample data does not

change? If present operational activity were suddenly to increase by 20%,

which subsystem element would be the first to break down? Or if increased

by 50%, or doubled? If man-made decisions were programmed into hardware,

what would be the expected incidence of inappropriate system response?

With normal system growth, what is the approximate time that present sys-

tem elements would use up existing excess capacity? How can we best cope

with these anticipated problems--better procedures? Better hardware?

More hardware?

Summary

Simulation fits into the system analysis picture wherever uncertainty and the

effects of the time dimension or the interrelationship of different elements

within a system need to be better understood, and a system field experiment

or exercise is too costly or impractical. Also, because the nature of complex
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systems operation is known only probabilistically, the effect of random

variation requires a dynamic simulation in order to examine interactions

between and among subsystems.

DISCRETE SIMULATION FOR SYSTEM ANALYSIS

Developments in computer technology have broadened the scorpe of large,

complex systems synthesis. Computers have grown in storage capacities
and have increased in speeds; software designed for simulation problems

now include discrete simulation systems packages; and statistical design

techniques have been coupled with simulation for more effective systems

analysis.

Engineers, in exploiting these new computer simulation developments, are

now confronted with the necessity of understanding discrete simulation

principles and techniques. Foremost in the analytical process is a require-

ment to structure system models that can be efficiently computerized.

Engineers and computer model builders must share the burden of discrete

simulation modeling.

By assuming that a system is organized as definable and important subsystems,

and that relationships among these subsystems can be either formulated or

described by logical conditional procedu.-es, a basis exists for model building.

To attain a feasible basis for modeling a system, specific goals--or system

objectives that the system must satisfy--must be established. To achieve a

realistic system model, all necessary and interesting system elements and

relationships must be quantifiable, and the objective functions established to

measure performance of examined system structures (that is, how well each

structure achieves system goals).

System Objectives

Starting with the assumption that the system exists (even conceptually), the

first step in system model building is to establish system objectives.

Analysis requirements, and the structure of a simulation model, clearly
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should be guided by these objectives. In simulation model-building terms,

this r.aeans: list the questions to which the engineer wishes quantified answers

about system performance. Prociteding from defined objectives, the engineer

can develop functional block diagrams and stimulus-response lines between

system elements necessary for driving all activity within the system. These

diagrams help the model builder describe the constraints in the system, the

possible system states produced, and the probability of achieving each state.

Stimuli exogenous to the system must also be identified.

Selecting System Variables

With the aid of a computer model builder, and with established system

objectives as a guide, key variables of system performance will be identified.

They will be either controlled or uncontrolled with respect to the system.

An objective function will be developed, expressed in terms of these variables.

This is the model builder's way of computing system performance measures

for objective comparisons among different structures of a system. Require-

ments will be established for data and for estimates of input-output functions

(submodels) characterizing subsystem interactions. Descriptions of all

attainable system states and the subsystem activities that produce each state

complete the system description for model building.

Events of a Discrete Simulation

Decomposition of a system's operation into component steps that may

(stochastically) or do (determi stically) change status of key system variables

produces: (1) a list of system events, and (2) cause-and-effect expressions--

equation, logical algorithm, and so forth--relating dependent and independent

variables of each event, to describe the reasons that changes occur.

These events are the conditions modeled in a discrete simulation analysis.

That is, the moment of change is modeled, and total system effect of that

change is evaluated in a simulation of these moments. Between events,

because the system is quiescent, performing normally without status change,
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or undergoing discrete changes, only the independent variable time will

change state. By definition, both the start and the end of a system operation

step become events of a discrete simulation model.

The mathematics of each event describes independent variables whose values

or states lead to possible alternatives of the dependent variable state. An

isolated event is one in which dependent variables are not independent

variables of other events that could occur simultaneously. By considering

time and space as criteria and by reducing either or both of these reference

bases, almost all system events can be ultimately defined as isolated. This

essentially increases both the detail required to describe the outcome of an

event and the number of events required to describe system dynamics. If

sequential operations occur at different time frames and affect different

functions of a system, isolated events can be developed. Parallel events

(those occurring at the same time) that do not share common functions are

isolated if they are statistically independent. Events sharing common

functions which are not parallel are isolated if they are mutually exclusive

(see Table 5). For discrete simulation computer model building, isolated

events facilitate model implementation.

Table 5

EVENT ORGANIZATION

Separable Common
TIME

Separable Isolated Isolated if
mutually exclu sive

Simultaneous Isolated if Not isolated
independent
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Formulation for Simulation

A system model is formulated for discrete simulation by logically or

mathematically describing events and associated variables. Events describe

system actions which change the state of the system (that is, change' variables

of the system). Variables are the entities of the system whose character-

* istics, when quantified, provide state conditions whose change must be

recognized in the simulation. The numeric values of these characteristics

become vectors or arrays of state condition.

Variables that confront mode' ,,lders are either controlled or uncontrolled

in the system and its operating environment. 'ncontrolled variables in the

system are controllable in a simulation, possibly by probabilistic algor-

Sithms. Y, Some simulations will not control all controllable variables, if

certain of these factors are not interesting at the moment; if experimental

design dictates they need not be measured explicitly; or if they are included

only to provide richness to a model (that is, provide a "realistic" model).

These are generally treated as random variables.

Several computer languages are available at present to implement system

simulation models. The need for specific attention to discrete simulation

software that eases the burden of programming, coding and debugging sys-

tem models is obvious when past history of project elapsed times is reviewed.

No such review will be made here; rather, we will summarize some of the

model building conveniences available for discrete simulation. These are

recognized as beneficial to other classes of computer programs, but several

simulation-specific systems have organized and exploited these techniques.

Significant reductions of elapsed times, from system modeling to operating

simulation programs, have resulted.

This is one of the compelling reasons that simulation experiments are

preferable either to field tests or experiments with actual systems.
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Timing

A unique requirement for simulation systems is to organize the management
of time passing as events occur. Time is an independent variable of all

simulations. Good techniques to simulate time can both increase analysis

accuracy and reduce computer operating time. If simulation start time is

T and progression over time is Ti, T 2 . .. Tk..., then time in simulation

must be monotonic increasing in (k). A model must simulate all events (i),

and each occurrence (j) of event (i) at time Tm (E. m) before those at T if
m itj n

m<n; otherwise, a cascade of system interactions triggered by the dependent

variables of E m i = 1, 2,...; j = 1, 2... that may be independent variables
n i, i

of En . will be disregarded, or, worse, erroneously simulated. "

Constraints determined by the systems engineer are used to compute model
elapsed time within each event. This could be a function of system overall

status at any point in a system operating cycle, of stochastic parameters,

etc. Caiendars of events are maintained by the simulation software, and each

event is se,-uenced to occur in order of time preference, however determined

in the model. Describing how elapsed time between system status changes will

occur as event constraints is sufficient to allow software to sequence properly

all events to determine realistically the effect of time on system performance.

Entity Descriptions

Simulation languages employ mathematical notation and easily understood

English expressions to describe variables and their characteristics. For

example, a voltage generator that is part of an automatic checkout device

might be labeled VOLT and described as in Table 6. Reference to the cube

of the voltage regulator could be stated in the program as CUBE (VOLT). If

there are several different generators of this type, then the variable VOLT

could be labeled VOLT = MANY and the quantity "MANY" be given a numeric

"**The problem of interactions between and among events occurring at Tk
simultaneously is ignored.
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'Fable 6

DESCRIBING A VARIABLE

VARIABLE: VOLT

CHARACTERISTIC NAME

Type KIND

Range: Upper HIGH
Lower LOW

Weight LBS

Dimension CUBE

Failure Rate MTBF

Maintenance Period CYCLE

Use STEPS

value limiting the size of the VOLT matrix. All VOLT variables would

require data specification for all defined characteristics; that is, the

specifications of the VOLT components in the system deemed necessary to

describe these generators' performance must be enumerated. Note that

KIND might very well be given a logical value 1 for ac and 0 for dc, so that

all voltage generators could be specified in a single matrix.

Because variables and characteristics that contribute to system model

realism and performance measurement must be described and quantified,

simulation languages provide simple means to express and relate them.

Subsystem levels can be related as follows:

AGE (STAGE(SIVB))
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to specify a type of a-tomatic equipment (AGE) specifically used for a

particular stage (STAGE) of the Saturn S-IVB (SIVB). Furthermore, the

expression

COUNT (STAGE, SIVB (PLACE, STATE))

might be countdown time accumulated for each stage of several S-IVB's at

different launch complexes and in different conditions with respect to a total

countdown cycle.

Event Computations

Simulation languages not only permit direct and English-like statements that

establish system variables and attributes, but.event computations are also

made with the following statements:

IF HIGH (VOLT)- LOW (VOLT) GR 1Z5, THEN DO....

FAIL = EXP**RANDM*MTBF (VOLT)

Association of items into classes containing commton characterittles It

accomplished with set instructions. Arithmetic and logical operations can be

performed on all variables temporarily grouped into sets by the dynamics of

systerr. performance. For example, queues of items awaiting future failure

computed on the basis of mean-time-to-failure can be gathered in a system

factor called QUEUE, automatically ranked on the earliest time to anticipated

failure. Operations that examine or change sets are perfori id on the factor

QUEUE. Simulation languages, not the model builders, worry about the

bookkeeping needed to manage the fluctuating size of QUEUE.

Other common set organization procedures, such as LIFO and FIFO, are

automatically controlled by the languages after the model builder specifies a

rule. Usually, he specifies such set discipline by a simple mark on a data

input form.
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Statistical Data Computations

Use of statistical data as input to discrete simulations is also a matter of

naming system variables, and of specifying data as continuous distributions,

tables, or histograms. Linear interpolation is automatic between values of

dependent variables. Random choice of independent variable is also

permitted. Computation of probabilities for standard density functions, such

as exponential, uniform, normal, Poisron, and so forth facilitate sampling

procedures. For example, Figure 7 is a cumulative distribution with each

point described as a pair (x, P(x)). Referring to the simulation variable

table will generate a random number R, where OR-l:., and then cause an

interpolation between the closest neighboring (x, P(x)) input values surround-

ing R :VP'(x).

Most simulation results are in the form of distc'ibutions and parameters

describing behavior of system elements. Stochastic representation of some

system elements leads to system actions that cannot be predicted with
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certainty. Thus, expected values, average lengths of waiting times, variances,

frequency distributions, and so forth, are typical forms of simulation results.

Simulation languages accomodate statistical data gathering. Simple instruc-

tions (macros) contain complete programs for integrating variables over

time, computing means, variances and other statistics, and compiling data

points for histogram and curve plots.

Closely associated with techniques used in simulation language to compile

statistical behavior of system variables is the facility to report these

statistics to the simulation analyst. Several current simulation languages

provide such data automatically; others allow analysts freedom to draw out-

put formats, designate the variable name (for example, VOLT), and map

with code marks specific data. Reports then are assembled in their entirety

by the simulation language according to the prescribed map.

Reference 3 presents an excellent discussion of computer simulation in

general.

SYNOPSIS

In practice, discrete simulation only partially fills the void in the process of

complete system anilysis, because one cannot hope to optimize system per-

formance with design parameters only through this process. This presenta-

tion, however, has shown how system engineering analysis can be better

organized to achieve more rational choices among alternatives by using

simulation. In fact, simulation use is proposed very early in the research

phase of the system life cycle. Further improvement of models possible in

the system development phase only enhances simulation applicability while

there is still time to alter design parameters. Even while systems are

operational, simulation is a technique that aids systems engineers to answer

redesign questions involving advanced procedures, revised operating policies

and unusual stress conditions.
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This paper has also discussed system analysis approaches that insure better

models for discrete simulation. It is important that system engineers and

simulation model builders together attack system analysis and synthesis

problems to insure both feasible and realistic simulations. Finally, some of

the simulation language aids have been described that translate system models

into efficient discrate simulation computer programs.
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SYSTEM OPTIMIZATION

INTRODUCTION

In the context of this paper, a major purpose of a complete system analysis

is to improve, in some sense, the system or its output. From the viewpoint

of the systems engineer or the operations analyst, this improvement is

accomplished through an optimization process. Thus, optimization is the

process of improving a system with "the best" as a goal.

This process has some very general characteristics. It can be either sub-

jective or objective, it can be either qualitative or quantitative, and it can

be thought of as being in a closed form or as a function requiring either

iteration or simulation (see Table 7). This portion of the lecture will briefly

discuss these characteristics, and .hen illustrate a powerful method of

optimizing for complex problems, with an actual example drawn from the

world of incentive contracting.

Table 7

OPTIMIZATION PROCESS

Qualitative Quantitative

Closed Open Closed Open

Subjective "Best" Voting Statement Adding
of value or

averaging
values

Objective Ordering a Selecting Derivatives Iterative
fixed set of and ordering equal to methods
alternatives an open set zero

of alte rnative s
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OPTIMIZATION METHODS

Subjective-qualitative, or nonquantitative, methods include the following:

(1) authoritative statements that this system is the "best" without proof or

justification- -the "salesman approach"; (Z) asking others for their opinion--

the "expert judgment approach"; and (3) voting in a committee--the "demo-

cratic approach". Many system decisions, if not most, are made by these

techniques.

Subjective-quantitative methods include (1) the calculation of a numerical

value for some system characteristic for one configuration and saying, "it

only costs this much" or "it's blue isn't it?"; (Z) comparison of this value

with others, especially competing, systems such as "this car is cheaper than

Z6 models of the so-called low-priced three"; and (3) "the weighted average

cost of operation is x cents per ton mile, " where neither the method of

weighting nor the factors averaged are made explicit.

Objective-qualitative methods include (1) the ordering of a fixed set of

alternative configurations-- "the best tactical fixed wing aircraft for this job

is--" and (Z) the ordering of an open set of alternative configurations-- "the

best solution to this tactical problem is to use a--, " when all feasible equip-

ment items are considered.

Objective-quantitative methods (for each independent measure of effiectiveness)

include the following:

1. Compute the measure for each possible configuration and select the
one with the highest (or lowest) value.

2. Compute the measure for some alternatives, plot the measure for
the principle variables, and select the "best" by inspection of the
resulting curves.

3. State the measure as an equation (function of controllable variables
and parameters).
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N o w n - ,_,_,_...... . .. .. ..

A. If the furction is differentiable, !heri L!ie solution may bc

obtainable in closed form by setting the partial derivatives
equal to zero and solving, or through the uise of La Grin~gian
multipliers.

B. If the function is not differena-le, ,r : ae D±rtL:als are c ir.-

plex and awkward, the nroce(.r•r 's *, - , >. rno '
iterative method.

(1) Interpolation methods (Newtor.'s Method).

(Z) Linear programming.

(3) Quadratic programming.

(4) Dynamic programming.

(5) Non-linear programming.

(a) Steepest ascent based on local partial derivatives.

(b) Pure search methods.
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INCENTIVE CONTRACTING EXAMPLE

In the contracting world, the basic problem is that of maximizing the fee

earned as a function of the risk involved. Contracts usually call for the
delivery of a number of items of a specified quality in a specified time

period at a specified cost. The questions of risk and uncertainty arise in

estimating the cost, quality or delivery schedule, or all three. If this

uncertainty is small, contract terms probably should specify a fixed price

(FP). This, in effect, makes the contractor assume all the risk, and in

return permits him to make and keep any or all fees (price minus actual

cost). On the other hand if this uncertainty is large, the customer may have

to assume the risk in order to get a contractor to agree to do the work. In
this case,a cost-plus-fixed-fee (CPFF) agreement is usually the best solution.

In the came of moderate risk, the contractor may be motivated to meet per-

formance requirements, schedules and cost estimates if his earned fee is

variable and also is dependent on how well he meets the customer's goals.

Thus the incentive contract was born: in its most basic form, it states that

the fee earned is a function of how well the contractor periorms.

To a systems engineer, this definition indicates that a mathematical function

can be developed which expresses the relationships among fee, cost, per-

formance and delivery time.

Fee = f (Cost, Performance, Time)

F = f(C, P, T)

It also suggests that if such an equation can be d&weloped, it can also be

optimized. For instance, should the customer suggest an incentive contract

in an RFP, it usually means that he has analyzed the work to be performed

in meeting the schedule and performance specifications, and has established

a set of- value judgments concerning the amount of additional fee he is willing
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to pay to obtain higher performance values or earlier delivery dates. This

is most often construed by the contractor to mean penalties for poor per-

formance or late delivery. In any event the contractor must also analyze

the work to be performed, must estimate the uncertainties and risks involved,

and must establish the amount of fee he desires for various levels of cost,

performance and delivery times. The process of incentive contract negotia-

tion then becomes one of reaching a compromise between these two estimates.

The problem of estimating the risk is equivalent to that of estimating an

expected performance level, and establishing a confidence region around it

for each performance factor and schedule item. If this is done and the

relationships among the factors are known, the overall or total risk can be

estimated in cumulative probability distribution" form. To accomplish

this estimate it is necessary to establish a conceptual model, develop

a mathematical model within this framework, estimate the unknown parame-

ters, and finally solve for fee as a function of the selected factors and

parameters. In other words, a complete system analysis is performed.

The model chosen for this incentive contract is of the following form: earned

fee is a function of cost and performance, F = f (C, P) . This model was

chosen because of its simplicity and because it could be represented by a

three-dimenp'onal surface. The model was constrained further by reasoning

that the fee should decrease as cost increases, and should increase as

performance increases. Two further constraints were added for this

particular case. One, the relationship between fee and cost should be

piecewise linear, to correspond with the contractual concept of cost sharing

(see Figure 8).

The relationship between fee and performance should be quadratic, to

correspond to the belief that every increase in performance should be

rewarded with an increase in fee, but at a lower rate as performance

becomes higher (see Figure 9). The combination of these constraints results

in a three-dimensional model as illustrated in Figure. 10.

43



I 'V.1. •:-

FEE

COSTl-

Figure 8. Fee Versus Cost Relationship

FEE

- PERFORMANCE

Figure 9. Fee Versus Performance Relationship

- IL

Figure 10. Fee Versus Cost and Performance Relationship
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The use of this model requires that schedule and performance items be

combined into a single measure of performance. This may seem to be a

mixing of oranges and apples; but by recalling that 1ate delivery may decrease

the value of the system as much as, say, a degradation in some technical

performance factor, this mixing becomes feasible. This feasibility is

enhanced when considering that the achievement of some technical perform-

ance goal may actually cause a delay in delivery. To accomplish the defini-

tion of the performance variable, it was decided to use a weighting system

based on points. The entire spectrum of performance factors, to be included

in the function determining fee, was allocated one thousand points. A matrix

of performance factors versus hardware end-items was formulated, and

points assigned on the basis of importance to program objectives, as in

Table 8.

Table 8

EQUIPMENT-PERFORMANCE MATRIX

Equipment Item Number
Performance

Factor 1 2 3 . • .n Total

A 1 0 8 1 x x

2 12 x x

3

B 1 10 96 24 x x

2 108 13 24 x x

M I x x x x x

2 x x x x x

Total X X X X 1000
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This form of weighting is ideal in the sense that quantitative items such as

delivery date, dichotomous items such as test pass or fail, and subjective

items such as maintainability and flexibility, can be included in the same

scale. It also permits the negotiation of the relative value of each item,

separately or in combination. A review of these weights was made to avoid

the inadvertant over-weighting of any particular item due to interaction

effects. This so-called domino effect can be treated by assigning the points

in a manner to account for these interactions.

While the performance scale was being negotiated by teams of technical

experts representing both the customer and the contractor- -negotiation to

ensure that the customer's goals would be met and that the technical risks

would be shared--the cost experts took a look at the expected total costs of

the program. These negotiations produced an expected cost, called by the

contracts people target cost or administrative target cost, and a rough

estimate of the probability of overruns and underruns,of specified amounts i

or percents of target cost. These two separate but related efforts produced

a qualitative and highly subjective estimate of the expected performance and

cost points. One such estimate, made by the contractor in the particular

case in mind, was that the performance points achieved would be about 65G,

or 65% performance, at a cost equal to a 15% overrun (target cost plus 15%).

At the same time, the customer's estimate at this point was 80% performance

at a 10% over-run. Because these two estimates did not agree, negotiation

was required to settle the point.

The contractor justified his position by separately and independently esti-

mating the probability of making the points assigned to each cell in the

matrix, as shown in Table 8. Each estimate was made by the technical

person responsibie for doing the actual work. At the same time, an upper-

and lower-bound estimate was made. This was a subjective procedure

designed to correspond to the statistical procedure of establishing a confidence

interval. A review of these procedures by the negotiation teams produced a
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negotiated position that the most probable performance and cost region fell

between 60% and 80% performance, and between 0% and 15% cost over-run.

This agreement produced a most likely region for the model; but fee doliars

or percent had not been agreed to, so the exact location was still in doubt.

The next and final step in specifying the exact model (specification of the

unknown parameters) was accomplished by negotiating the fee dollars for

each corner of this region or box (s.e Figure 11).

100%

60%

T.C. COST

Figure 11. Negotiated Relationship

This negotiation took the form of establishing a set of dollar fees for each

of the four corners which was acceptable to both parties. Once this had been

accomplished, the shape of the model that would pass through these four

points was determined by negotiating the maximum fee dollars for 100% per-

forroance and minimum cost, and d set of share ratios. This maximum point

is very probably unobtainable, and was determined primarily by considering

the effect of such a point on the renegotiation board. This point :,nd a set of

share ratios were negotiated; the share ratios are for determining the portion

of any change in cost from the target cost to be borne by the customer and

the contractor. In turn, the exact rnathematical model was specified for this

contract.

Before the proposal was submitted by the contractor, a computer model was

developed for the general model which was piecewise linear in the -Lost-fee
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plane, and quadratic in the fee-performance plane. This program was designed

ratios; and through curve-fitting techniques, solve for the quadratic coefficients

at each cost break (the point where cost-share ratio changes). These coeffi-

cients and cost-break values then completely defined the surface, and the 4
quantitative aspects of the contract.

This col iputer program is, in effect, a simulation routine for determining

the effect of various combinations of cost and performance on fee. In addition,

the computer could and did compute such items as fee dollars per performance

point per cost dollar, so that tradeoffs betweei, 'ost and performance could be

investigated. This program was available during thc entire negotiation period,

and was used by both sides to determine the effect of each proposed change.

It was used to optimize the contract in the sense of assuring the customer a

high probability of obtaining his desired performance, cost and delivery

objectives, at the same time assuring the contractor that he would obtain a

fai• ri•arn for his effort.

For more detailed information on incentive contract negotiation, see Refer-

ences 4, 5 and 6.

Optimizing by use of a computer simulation of a mathematical model, to

provide estimates of system performance for systematically changed values

of the controllable variables and/or parameters, is probably the most

powerful optimizing technique available for the complete analysis of highly

complex systems. It is particularly appropriate in the conceptual develop-

ment phases of a la-rge system. When kept up to date with system design

changes and newly discovered relationships, it provides the most powerful

tool for managing and controlling the procurement phase, and assures that

the final sysLern meets its technical objectives on time and within an

acceptable cost range.
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APPENDIX

COMPLETE SYSTEM ANALYSIS: A GRAPHIC SUMMARY

Figures A- 1 through A-8 graphically summarize complete system analysis,

and Figures A-9 through A- 16 graphically summarize complete system

design.

51



COMPLETE SYSTEM ANALYSIS: FRAMEWORK FOR
UTILIZATION OF COMPUTER SIMULATION IN ANALYSIS

AND OPTIMIZATION OF A COMPLEX SYSTEM
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SYSTEM MODEL. SIMULATION DATA,
AND EXPERIMENTAL DATA COMPARISON
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COMPLETE SYSTEM DESIGN:
FRAMEWORK FOR UTILIZATION OF COMPUTER

SIMULATION 'N DESIGN OF A COMPLEX SYSTEM
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SYSTEM DESIGN AND MODEL SPECIFICATION
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